43 research outputs found

    The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway.

    Get PDF
    Cutaneous melanoma is the fastest increasing cancer worldwide. Although several molecular abnormalities have been associated with melanoma progression, the underlying mechanisms are still largely unknown and few targeted therapies are under evaluation. Here we show that the HOXB7/PBX2 dimer acts as a positive transcriptional regulator of the oncogenic microRNA-221 and -222. In addition, demonstrating c-FOS as a direct target of miR-221&222, we identify a HOXB7/PBX2→miR-221&222 →c-FOS regulatory link, whereby the abrogation of functional HOXB7/PBX2 dimers leads to reduced miR-221&222 transcription and elevated c-FOS expression with consequent cell death. Taking advantage of the treatment with the peptide HXR9, an antagonist of HOX/PBX dimerization, we recognize miR-221&222 as effectors of its action, in turn confirming the HXR9 efficacy in the treatment of human melanoma malignancy, whilst sparing normal human melanocytes. Our findings, besides suggesting the potential therapeutic of HXR9 or its derivatives in malignant melanoma, suggest the disruption of the HOXB7/PBX2 complexes, miR-221&222 inhibition or even better their combination, as innovative therapeutic approaches

    The energy center initiative at politecnico di torino: practical experiences on energy efficiency measures in the municipality of torino

    Get PDF
    Urban districts should evolve towards a more sustainable infrastructure and greener energy carriers. The utmost challenge is the smart integration and control, within the existing infrastructure, of new information and energy technologies (such as sensors, appliances, electric and thermal power and storage devices) that are able to provide multi-services based on multi-actors and multi and interchangeable energy carriers. In recent years, the Municipality of Torino represents an experimental scenario, in which practical experiences in the below-areas have taken place through a number of projects: 1. energy efficiency in building; 2. smart energy grids management and smart metering; 3. biowaste-to-energy: mixed urban/industrial waste management with enhanced energy recovery from biogas. This work provides an overview and update on the most interesting initiatives of smart energy management in the urban context of Torino, with an analysis and quantification of the advantages gained in terms of energy and environmental efficiency

    AP2α controls the dynamic balance between miR-126&126∗ and miR-221&222 during melanoma progression

    Get PDF
    Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126∗ in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126∗, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse expression pattern of miR-126&126∗-targeted genes that were induced by miR-221&222. Looking for a central player in this complex network, we revealed the dual regulation of AP2α, on one side directly targeted by miR-221&222 and on the other a transcriptional activator of miR-126&126∗. We showed the chance of restoring miR-126&126∗ expression in metastatic melanoma to reduce the amount of mature intracellular heparin-binding EGF like growth factor, thus preventing promyelocytic leukemia zinc finger delocalization and maintaining its repression on miR-221&222 promoter. Thus, the low-residual quantity of these two miRs assures the release of AP2α expression, which in turn binds to and induces miR-126&126∗ transcription. All together these results point to an unbalanced ratio functional to melanoma malignancy between these two couples of miRs. During progression this balance gradually moves from miR-126&126∗ toward miR-221&222. This circuitry, besides confirming the central role of AP2α in orchestrating melanoma development and/or progression, further displays the significance of these miRs in cancer and the option of utilizing them for novel therapeutics

    A Pilot Plant for Energy Harvesting from Falling Water in Drainpipes. Technical and Economic Analysis

    No full text
    Renewable energy sources are currently object of great attention from the scientific community involved on the matter, in the general context of the ongoing climate change and related implications. In this work, we investigate the costs needed to implement a technical solution to harvest energy from drainpipes. To this aim, a pilot plant was built at the Laboratory of Environmental and Maritime Hydraulics (LIDAM), University of Salerno, Italy. The driving idea consists in the possibility of collecting rainwater at the roof of a building, storing it in tanks. In this way, the established hydraulic head can be converted into kinetic energy at the bottom of the building as can be easily explained by applying the Bernoulli’s principle. Here, a water jet of mean velocity of up to tens of m/s is formed at the pipe outlet as it is provided with a nozzle. The stream is directed against a Pelton turbine where the rotational kinetic energy is finally converted into electrical energy by means of a DC brushed motor turned as generator. The analysis of the investment and management costs of the pilot plant provides useful economic parameters for implementing the project in practice
    corecore